CC BY 4

Article Information

College of Basic Education Researches Journal

https://berj.uomosul.edu.iq/

On Strongly Y- Regular Rings

Luma Ahmed Khaleel Beyda S. Abdullah University of Mosul, Department of Mathematical, College of Education for Pure Sciences, Mosul. Iraq.

Article history: Received: August 1,2025 Reviewer: November 19, 2025 Accepted: November 19, 2025 Available online	In our study we examine definition of strongly γ -regular rings and associates, investigate interplay between strongly γ - regular rings and other reduced rings. We also study GP – injective modules, and discuss its relation with strongly γ -regular rings. some important results are secured. Using the connotation of strongly γ -regular rings .
Keywords:	researchers concluded:
Strongly Regular Ring, Strongly γ-Regular, GP-Injective Modules.	 1- If K be a right semi-duo semi-RG-R satisfying condition (*) and K /a K be P –injective for every element a of K. Then K is a strongly γ-RG-R. 2- For a ring K is a reduced satisfying condition (*) and every
Correspondence: E-mail: l.a.khaleel81@uomosul.edu.iq	 2- For a ring K is a reduced satisfying condition (*) and every maximal ideal of K is a right annihilator, then K is strongly γ -RG-R. 3- Let K be a ring satisfying condition (*). Then K is strongly γ - RG-K if every right K module is GP-injective.
	 4- Let K be a reduced ring satisfying condition (*). Then the center of K is strongly γ - RG-R if K is a right GP-injective ring.

Abstract

P-ISSN: 1992–7452 E-ISSN: 2664-2808

الحلقات المنتظمة القوبة من النمط - ٢

لمى احمد خليل بيداء سهيل عبد الله

جامعة الموصل، قسم الرباضيات، كلية التربية للعلوم الصرفة، الموصل، العراق.

المستخلص

يهدف البحث الى دراسة تعريف الحلقات المنتظمة القوية من النمط- γ والعلاقة بينها وبين الحلقات الاخرى المختزلة. ودراسة المقاسات الغامرة من النمط- γ وأوجدنا العلاقة بينها وبين الحلقات المنتظمة القوية من النمط- γ :

- -P النامية المامة المنتظمة تحقق شرط (*) وان Λ هي غامرة من النمط -P النمط عنصر Λ فان Λ هي حلقة منتظمة قوية من النمط -P .
- 2. لتكن \Re حلقة مختزلة تحقق شرط (*) وكل مثالي أعظم في \Re هي تالف ايمن فان \Re هي حلقة منتظمة قوية من النمط γ .
- 3. لتكن \mathbf{g} حلقة تحقق شرط (*) فان \mathbf{g} هي حلقة منتظمة قوية من النمط \mathbf{g} إذا كان كل مقاس ايمن هي غامرة من النمط \mathbf{g} .
- 4. لتكن \mathfrak{R} حلقة مختزلة تحقق شرط (*) فان مركز \mathfrak{R} هي حلقة منتظمة قوية من النمط γ إذا كانت \mathfrak{R} حلقة غامرة من النمط $-\mathfrak{R}$.

الكلمات المفتاحية: الحلقة المنتظمة القوبة، الحلقة المنتظمة من النمط γ ، المقاسات الغامرة من النمط \mathbb{GP} .

1. Introduction

Rings are algebraic structures that are closed under two binary operations: addition and multiplication. The elements of a ring satisfy specific defining axioms. In this work, & denotes an associative ring with unity, and the modules considered are unitary right modules. A - . The symbol RG-R will stand the regular ring. The notion of Von Neumann RG-Rs was initially presented by Von Neumann in 1936. (Von Neumann, 1936), called is RG – R (resp. strongly RG-R) if for every $a \in \Re$, has an inner inverse $b \in \Re$ in the sense that a=a b a. (resp. $a = a^2 b = b a^2$). See (Kim, et. al, 2024) and (Muhammad& Wahyuni, 2023). In (Al-Kouri, 1996), gave the present definition of $\pi - RG - R$ is a ring if for every $a \in \Re$, there is an n where $a^n = a^n$ b a^n is regular. Following (Mohammad & Salih, 2006), introduced the concept of γ - RG-Rs and showed that any RG - Rs is γ - RG - Rs also showed the relation between y - RG - Rs and strongly RG-Rs. Some of the important achievements on certain properties of s is a right (left) semi-duo, iff, any principal right (left) ideal of s is a two-sided ideal generated by the same element (Yu,1995). (Azumya,1954) Strongly $\pi - RG - R$ is a ring \Re in which every $a \in \Re$, there is $b \in \Re$ and a positive integer n where $a^n = a^{n+1} b$. For more details see (Chen, et al., 2014), (Danchev, 2024), (Nandakumar, et al., 2019) and (Wardayani, et al, 2020). A ring & is ERT- ring (Ibrahim, 2004) if for each essential right ideal of s, there is two – sided. Following (Shuker, 1994), a ring s is a right (left) semi – RG – R if $\forall a \in R$, there is $b \in \Re$ where a = ab(ba) and r'(a) = r'(b) [Y (a) = Y (b)]. We extend the notion of a right semi – RG – R to a right semi – π RG – R a ring \Re is right semi π – RG if and only if any $a \in \Re$ there is a positive integer n and an elements $b \in \Re$ where $a^n = a^n b$ and $r(a^n) = r(b)$ (Shuker, 1994). s is semi-prime if it contains no non zero nilpotent ideals. A ring \Re is said to be a semi-commutative ring if whenever a, b \in \Re such that a b = 0, then a). Salih,2006& Mohammad commutative ring.(-. Every reduced ring is semi= 0ь я respectively. r(a) and l(a) is right and left annihilators are denoted by $\Re^* = \Re \setminus \{0\}$ This paper consists of three items dealing in the second item study where \$\pi\$ strongly γ – RG satisfying (*) condition and we get relationship between this rings and other ring. In third we discuss a \mathbb{GP} – injective when is \Re strongly γ - RG-R.

2. Some result in Strongly γ -Regular Ring

Definition 2.1 (AL- Hisso, 2009)

A ring $\mathfrak R$ is called strongly $\gamma - RG - R$ if $\forall a \in \mathfrak R$ there is $\mathfrak b$ in $\mathfrak R$ sense that $a = a^2 \mathfrak b^n$ where n is a positive integer.

A ring \Re is called strongly $\gamma - RG - R$ if every element of \Re is strongly γ -regular element. For a strongly $\gamma - RG - R$ \Re , then one may choose $a = a^2 b^n$ and one has $a = a^2 b^n = b^n a^2$.

Every strongly $\gamma - RG - R$ is a strongly RG - R, however, the converse is not generally true, for examples the ring $(\mathbb{Q}, +, ...)$ of rational numbers, the rational (real) and a quadratic field are strongly regulars but not strongly γ -regulars.

Definition 2.2. (Mohammad & Salih,2006)

We say that a ring \Re satisfies condition (*) if every $1 \neq a \in \Re$ and $b \in \Re$, sense that $ab = b^m a$, where m > 1 is a positive integer. Therefor every quasi-associative ring if satisfying condition (*).

Theorem 2.3. Let \mathfrak{R} be a reduced ring that satisfies condition (*). Then the following statements are equivalent:

- 1. \Re is strongly $\gamma RG R$.
- 2. \Re is strongly $\pi RG R$
- 3. is $\pi RG R$.

Proof.

1⇒2: Since \Re is strongly $\gamma - RG - R$, then by [(Mohammad & Salih,2006); Theorem 5.6] \Re is $\gamma - RG - R$, and since \Re satisfying condition (*) then by [(Mohammad & Salih,2006); Theorem 4.6] R is RG - R, and since \Re is reduced, then by (1) Proposition (2.2.4) \Re is strongly $\pi - RG - R$.

2⇒1: Since \Re is a strongly $\pi - RG - R$, then for every $a \in \Re$, there exists $b \in \Re$ and a positive integer n such that $a^n = a^{n+1}b$. implies that $a^n(1 - ab) = 0$. Then $(1 - ab) \in r(a^n) = r(a) [(Al-Kouri, 1996); Lemma (2.1.9)] a(1 - ab) = 0$.

Hence $a = a^2 b$. Therefore \Re is strongly RG – R. Since \Re satisfying condition (*) then by [(Mohammad & Salih,2006), Theorem. 5.4] \Re is strongly γ – RG – R.

1⇒3: Since \Re is strongly γ – RG – R satisfying condition (*), then R is strongly π – RG – R, then by [(Al-Kouri,1996); Corollary (2.2.7) \Re is π – RG – R.

3⇒1 Trivial.

Theorem 2.4. Let \mathfrak{R} be a reduced ring satisfying condition (*) then the following are equivalent:

- 1. \Re is strongly $\gamma RG R$.
- 2. is a right semi RG R.

Proof.

1⇒2 Let \Re be strongly γ – RG – R. By [(Mohammad & Salih,2006), Theorem 5.6] \Re is γ – RG – R, and since R satisfying condition (*), by [(Mohammad & Salih,2006), Theorem 4.6] \Re is RG-R. In [(Shuker,1994), Lemma 2.3] \Re is a right semi – RG – R.

 $2 \Longrightarrow 1$ Since \mathfrak{K} is a right semi – RG – R, As in [(Shuker, 1994), Theorem 3.2] r(a) is direct summand for all a in \mathfrak{K} , and since \mathfrak{K} satisfying condition (*), so \mathfrak{K} is γ – RG – R, and since \mathfrak{K} is reduced, so [(Mohammad & Salih, 2006), Theorem 5.7] \mathfrak{K} is strongly γ – RG – R.

Theorem 2.5. Let $\mathfrak R$ be a left semi-duo ring satisfying condition (*). Then $\mathfrak R$ is a strongly $\gamma - RG - R$ if for any $a \in \mathfrak R$ then $a^n R$ is a right semi-regular ideal, where n is a positive integer.

Proof.

Suppose that $a \in \Re$, let n be a positive integer such that $a^n R$ is a right semi-regular ideal, then there exists $y \in a^n \Re$ such that $a^n = a^n y$ and $r(a^n) = r(y)$. Since \Re is a left semi-duo ring, so $a^n \Re = \Re a^n$. But $y \in a^n \Re$, then $y \in \Re a^n$, hence $y = a^n z = ba^n$ for some $z, b \in \Re$. Therefore $a^n = a^n b a^n$. Thus $\Re is \pi - RG - R$. Since $\varphi = RG - R$ is strongly $\Re satisfying condition (*), in [Theorem 2.3] <math>\Re$

Theorem 2.6. If \Re be a right semi-duo semi – RG – R satisfying condition (*) and \Re /a \Re be P –injective for every element a of \Re . Then \Re is a strongly γ – RG – R.

Proof.

Since \Re is a right semi-duo semi – RG – R and \Re /a \Re is P – injective for all a $\in \Re$, and [(Shuker,1994),Corollary 2.6] we have \Re is strongly RG – R and since \Re satisfying condition (*) then in view of [(Mohammad & Salih,2006),Theorem 5.4] \Re is strongly γ – RG – R.

Theorem 2.7. Let \mathfrak{K} be reduced satisfying condition (*), if P a special prime ideal of a ring \mathfrak{K} , and if \mathfrak{K} / P is a right semi-regular. Then \mathfrak{K} is strongly $\gamma - RG - R$.

Proof.

Since \mathcal{P} is a special prime ideal of a reduced ring \Re and \Re/\mathcal{P} is a right semiregular thus, owing to [(Shuker,1994), Theorem 3.2] \Re is a right semi-RG-R, and since \Re satisfying condition (*) then from [Theorem 2.4] \Re is strongly $\gamma - RG - R$.

Theorem 2.8. For a ring \Re is a reduced satisfying condition (*) and every maximal ideal of \Re is a right annihilator, then \Re is strongly $\gamma - RG - R$.

Proof.

Let $a \in \mathfrak{R}$, we shall prove that $a^n \mathfrak{R} + r(a^n) = \mathfrak{R}$. If not, there exists a maximal right ideal \mathcal{M} containing $a^n R + r(a^n)$. If $\mathcal{M} = r(b)$ for some $0 \neq \mathfrak{R}$, we have $b \in \mathfrak{I}[a^n \mathfrak{R} + r(a^n)] \subseteq \mathfrak{I}(a^n) = r(a^n)$, which implies $b \in \mathcal{M} = r(b)$, then $b^2 = 0$ and b = 0, a contradiction. Therefore $a^n + r + \mathfrak{R}$ $(a^n) = \mathfrak{R}$. In particular $a^n + c + d = 1$, with $c \in \mathfrak{R}$ and $d \in r(a^n)$, then $a^n = a^n$, which proves \mathfrak{R} is $\pi - RG - R$, and since \mathfrak{R} satisfying condition (*)in view of [Theorem 2.3] \mathfrak{R} is strongly $\gamma - RG - R$.

Theorem 2.9. For a ring \Re be a duo rings satisfying condition (*). Then \Re is strongly $\gamma - RG - R$ if for any $a \in \Re$ then $a^n = u$ e for some unites $u \in \Re$ and some idempotent $e \in \Re$

Proof.

Let a be an element in \Re , and let $a^n = u e$ for some unit $u \in \Re$ and some idempotent $e \in$, but ${}^n a^1 \cdot u$ ${}^n e = a$ n . auis the inverse of u^{-1} , where $a^{n1} \cdot e = u$. Hence \Re $a^n = u$ e so a^n e = ue. e = u = u = u = u = u . Hence u = u = u . Thus u is u = u = u = u = u = u = u = u = u . Hence u =

Theorem 2.10. Let \Re be an ERT- ring satisfying condition (*). Then \Re is strongly $\gamma - RG - R$ if \Re is a fully right idempotent.

Proof.

For all $b \in \Re$, then $\Re = b \Re + s$ is essential in \Re with some right ideal s. Now since $b \in (\Re b \Re)b \subseteq \Re b$, then we have b = (ba + s)b, for some $a \in \Re$ and $s \in \Re$. then $b - b a b = s b \in s \cap \Re b = \{0\}$. Therefore b = b a b, and hence \Re is regular. Since \Re satisfying condition (*)in view of [(Mohammad & Salih,2006), Theorem 5.5] \Re is strongly $\gamma - RG - R$.

Remark 2.11.

Every strongly $\gamma - RG - R$ is $\gamma - RG - R$, However, the converse does not hold in general. For instance, consider the ring $R_{2\times 2}$ (Z) of 2×2 matrices over that ring Z_2 is $\gamma - RG - R$ but not strongly $\gamma - RG - R$ because the element $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is γ - regular element but not strongly γ -regular element.

3. Relation between Strongly γ - regular ring and \mathbb{GP} -Injective

In this section we investigate the relatedness between right GP -injective with strongly $\gamma - RG - R$.

Definition 3.1

A right \mathfrak{K} —module \mathfrak{M} is referred to as generalized p-injective (abbreviated as \mathfrak{GP} -injective) if for any element in \mathfrak{K} , where a positive integer p then p and every right p - homomorphism of p at p extends to one of p into p. For more details see (Chen, et al, 2005) and [(Kim& Lee, 2011), (Abed, et al, 2022)].

Theorem 3.2. If \mathfrak{K} be a reduced ring where satisfying condition (*) for any maximal right ideal is \mathbb{GP} – *injective* Then is an *strongly* γ – RG – R.

Proof.

Let $a \in \Re$. We Assume that $a^n \Re + r(a^n) = \Re$. If not, A maximal right ideal \mathcal{M} exists containing $a^n \Re + r(a^n)$. Let $F: a^n \Re \to \mathcal{M}$ be canonical injective define by $F(a^n b) = a^n b$ for every $b \in \Re$. Since \mathcal{M} is \mathbb{GP} – injective then there exists $s \in \Re$ such that $F(a^n b) = s a^n b$. Therefore $a^n = F(a^n) = s a^n$. Thus $1 - s \in \mathbb{I}(a^n) = r(a^n) \subseteq \mathcal{M}$, which implies $1 \in \mathcal{M}$, a contradiction. Hence $a^n \Re + r(a^n) = \Re$. In particular $a^n s + d = 1$ for some $s \in \Re$ and $d \in r(a^n)$, so $a^n s a^n = a^n$. Therefore satisfying \Re . Since $\Re is \pi - RG - R$ condition (*), then by [Theorem 2.3] $\Re is strongly \gamma - RG - R$.

Theorem 3.3. Let \Re be a ring satisfying condition (*). Then \Re is strongly $\gamma - RG - \Re$ if every right \Re module is \mathbb{GP} – injective.

Proof.

Let $a^n \Re$ is a principal right ideal of \Re and let $a^n \Re$ is \mathbb{GP} – injective. For any $a \in \Re$, consider the identity mapping $F: a^n \Re \to a^n \Re$. Since $a^n \Re$ is GP-injective, then there exists $s \in a^n \Re$ such that $F(a^n b) = sa^n b$ for all $b \in \Re$. Then $a^n = F(a^n) = sa^n$. Since $s \in a^n \Re$, then $s = a^n r$ for some $r \in \Re$, and hence $a^n = a^n r a^n$. Thus $\Re is \pi - RG - R$. Since \Re satisfying condition (*),by [Theorem 2.3] $\Re is strongly \gamma - RG - R$.

Theorem 3.4. Let \Re be a right duo - ring satisfying condition (*) with any simple right \Re -module is \mathbb{GP} - injective. Then \Re is strongly $\gamma - RG - R$.

Proof.

Since \Re be a right duo-ring and every simple right \Re -module is \mathbb{GP} - *injective*, in view of [(Shuker & Mahmood,1994), Theorem 2.4.2] \Re is $\pi - RG - R$, and since \Re Satisfying condition (*) by [Theorem 2.3] \Re is strongly $\gamma - RG - R$.

Theorem 3.5. Let \Re be a ring satisfying condition (*) and for every a in \Re , \Re/r (a^n) is \mathbb{GP} -injective. Then \Re is strongly $\gamma - RG - R$.

Proof.

Let a be a non-zero element in R. Define a right \mathfrak{R} -homomorphism $F: a^n \mathfrak{R} \to \mathfrak{R} / r(a^n) b y F(a^n x) = x + r(a^n) for all x \in \mathfrak{R}$, where F is well defined, let $a^n x_1 = a^n x_2$, for any two elements $x_1, x_2 \in \mathfrak{R}$ then $a^n (x_1 - x_2) = 0$, so $x_1 - x_2 \in r(a^n)$ and hence $F(a^n x_1) = x_1 + r(a^n) = x_2 + r(a^n) = F(a^n x_2)$.

Since $\Re / r(a^n)$ is GP-injective, so if $s \in \Re$ then $F(a^n x) = (s + r(a^n)) a^n x = s a^n x + r(a^n)$. Now $F(a^n) = 1 + r(a^n) = s a^n + r(a^n)$, which implies $1 - s a^n \in r(a^n)$. So $a^n = a^n s a^n$. Hence is $\pi - RG - R$. If \Re satisfying condition (*), and notice that using [Theorem 2.3] \Re is strongly $\gamma - RG - R$.

Theorem 3.6. Let \mathfrak{R} be a reduced ring satisfying condition (*). Then the center of \mathfrak{R} is strongly γ - RG-R if \mathfrak{R} is a right \mathfrak{GP} -injective ring.

Proof.

Let C the center of $\Re 0, 0 \neq s \in C$ and let $u \in \ell(r(s^n)) = \ell(r(\Re s^n))$. Define $F: s^n \Re \to \Re is$ a right $\Re -$

homomorphism by $F(s^n x) = u x \forall x \in \Re$, then F is well -defined, indeed, let s^n elements $x_1, x_2 \text{ in } \Re, \text{ then } s^n (x_1 - x_2) = 0,$ $x_1 = s^n x_2$ for any two so $x_1 - x_2 \in r(s^n)$. Since $r(s^n) = r(\ell(r(s^n))) \in r(u)$, then $x_1 - x_2 \in r(u)$ $u(x_1 - x_2) = 0$ Hence $ux_1 = ux_2$. Therefore $F(s^n x_1) = ux_1 = ux_2 = F(s^n x_2)$. Now, since \Re is GP-injective, then there exists $b \in \Re$ such that $u x = F(s^n x) = bs^n x$. now, $u = f(s^n) = b s^n \in \Re s^n$. Thus $\ell[(\Gamma(s^n)] = \Re s^n$. Since $\Gamma(s^n) \subseteq \Gamma(s^{n+1})$, then $s^n = d \, s^{n+1}$ for some $d \in \Re$, therefore s is strongly $\pi - RG - R$, and since \Re satisfying condition (*) and notice that using [Theorem 2.3] s is strongly $\gamma - RG - R$.

4. Conclusion

Our aim in this work is to study strongly γ - regular rings when ring \Re is associative ring with unity and clarify some important properties. Finally study \mathbb{GP} - injective and its relationship with strongly γ -regular rings.

5. References

Al-Kouri, M. R. M. (1996). "On π -Regular Rings" (Doctoral dissertation, M. Sc. Thesis, Mosul University).

AL- Hisso Sh, S. E. (2009). On Some Types of Strongly Regular Rings, M. Sc. Thesis, Mosul University.

Azumya, G. (1954). Strongly π -regular ring, J. Fac. Sci. Hokkaido Univ. Series I. Mathematics, 13(1), 34-39.

Chen,H. Kose,H.and Kurtulmaz ,Y. (2014). Extensions of strongly π -regular rings ,Bull. Korean Math. Soc. 51, 555–565.

Chen, J. , Zhou, X. and Zhu, Z. (2005). Gp - injective rings need not be P-injective , comm. Algebra, 33 , 2395 - 2402 .

Danchev, P. V. (2024). A symmetric generalization of π -regular rings. Ricerche di Matematica, 73(1), 179-190.

Ibrahim, Z.M. (2004). On ERT and MERT – rings. AL-Rafidain Journal of Computer Sciences and Mathematics, 1(1), 28-33.

Kim, N. K., Kwak, T. K., Lee, Y, & Ryu, S. J. (2024). On von Neumann Regularity of Commutators. In Algebra Colloquium (Vol. 31, No. 02, pp. 181-198). World Scientific Publishing Company.

Kim, N. K., & Lee, Y. (2011). On strong π -regularity and π -regularity. Communications in Algebra, 39(11), 4470-4485.

Abed, M. M., Al-Sharqi, F., & Zail, S. H. (2022). Injective modules, projective modules and their relationships to some rings. In AIP Conference Proceedings (Vol. 2472, No. 1). AIP Publishing.

Mohammad, A. J. and Salih, S.M. (2006). On y-regular rings, J. Edu. Sci, 18(4).

Muhammad, H., & Wahyuni, S. (2023). Generalization of von-neumann regular rings to von-neumann regular modules. Barekeng: Jurnal Ilmu Matematika dan Terapan, 17(4), 1885-1892.

Von Neumann, J. (1936). On Regular rings, Proceeding of the National Academy of Sciences, 22(12), 707-713Acad.

Nandakumar. P, Dheena P and Kanthakumar ,D. (2019), A Type of Strongly Regular Semi rings, The Journal of Fuzzy Mathematics, 27(2), 487–498.

Shuker, N.H. (1994). On semi-regular rings. Journal of education and science, 21, 183-187.

Shuker, N.H, Mahmood. A.S. (1994). On π -regular ring. Journal of education and science, Vol. (22).

Wardayani, A., Kharismawati, I., Sihwaningrum ,I. (2020). Regular rings and their properties. In Journal of Physics: Conference Series (Vol. 1494, No. 1, p. 012020). IOP Publishing.

Yu, H.P. (1995). On quasi-duo rings, Glasgow Mathematical Journal, 37, 21-30.