طريقة انكماش باناخ لحل المعادلات التفاضلية التكاملية الجزئية
القسم: Article
الملخص
في هذا البحث، تم استخدام طريقة انكماش باناخ لحل المعادلات التفاضلية التكاملية الجزئية الخطية وغير الخطية من نوع فولتيرا وفريدهولم ومقارنتها بالحلول الدقيقة لإثبات دقة الطريقة المقترحة. كشفت النتائج أن طريقة انكماش باناخ فعالة للغاية وبسيطة وذات دقة عالية لحل المعادلات التفاضلية التكاملية من الرتب العليا. تم حل أربعة أمثلة مختلفة ومقارنتها بالحلول الدقيقة باستخدام متوسط الخطأ التربيعي والخطأ المطلق. تظهر الجداول والأشكال تقارب الطريقة المقترحة في الحل.
المراجع
- Dehghan, M. (2006). Solution of a partial integro-differential equation arising from viscoelasticity. International Journal of Computer Mathematics, 83(1), 123-129.
- Kythe, P., & Puri, P. (2011). Computational methods for linear integral equations. Springer Science & Business Media
- Wazwaz, A. M. (2006). A comparison study between the modified decomposition method and the traditional methods for solving nonlinear integral equations. Applied Mathematics and Computation, 181(2), 1703-1712
- Dehghan, M. (2006). Solution of a partial integro-differential equation arising from viscoelasticity. International Journal of Computer Mathematics, 83(1), 123-129.
- Sachs, E. W., & Strauss, A. K. (2008). Efficient solution of a partial integro-differential equation in finance. Applied Numerical Mathematics, 58(11), 1687-1703
- Abergel, F., & Tachet, R. (2010). A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems-Series A, 27(3), 907-917
- Hepperger, P. (2012). Hedging electricity swaptions using partial integro-differential equations. Stochastic Processes and their Applications, 122(2), 600-622.
- Zadeh, K. S. (2011). An integro-partial differential equation for modeling biofluids flow in fractured biomaterials. Journal of theoretical biology, 273(1), 72-79
- Yanik, E. G., & Fairweather, G. (1988). Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Analysis: Theory, Methods & Applications, 12(8), 785-809
- Lin, Y., & Zhang, T. (1991). The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type. Applications of Mathematics, 36(2), 123-133
- Pani, A. K., Thomée, V., & Wahlbin, L. B. (1992). Numerical methods for hyperbolic and parabolic integro-differential equations. The Journal of Integral Equations and Applications, 533-584.
- Shang-bin, C., & Yu-lan, M. (1994). Global and blow-up solutions of a class of semi linear integro-differential equation. Appl. Math, 6(4), 445-451
- Sloan, I. H., & Thomée, V. (1986). Time discretization of an integro-differential equation of parabolic type. SIAM Journal on Numerical Analysis, 23(5), 1052-1061.V.
- Soliman, A. F., El-Asyed, A. M. A., & El-Azab, M. S. (2012). On the numerical solution of partial integro- differential equations. Mathematical Sciences Letters, 1(1), 71-80.
- Tchier, F., Dassios, I., Tawfiq, F., & Ragoub, L. (2021). On the approximate solution of partial integro-differential equations using the pseudospectral method based on Chebyshev cardinal functions. Mathematics, 9(3), 286.
- Hussain, A. K., Fadhel, F. S., Rusli, N., & Yahya, Z. R. (2020, July). Iteration variational method for solving two-dimensional partial integro-differential equations. In Journal of Physics: Conference Series (Vol. 1591, No. 1, p. 012091). IOP Publishing.
- Alao, S., Akinboro, F. S., Akinpelu, F., & Oderinu, R. (2014). Numerical solution of integro-differential equation using Adomian decomposition and variational iteration methods. IOSR Journal of Mathematics, 10(4), 18-22.
- Altun, I., & Simsek, H. (2010). Some fixed-point theorems on ordered metric spaces and application. Fixed point theory and applications, 2010, 1-17.
- Berinde, M., & Berinde, V. (2007). On a general class of multi-valued weakly Picard mappings. Journal of Mathematical Analysis and Applications, 326(2), 772-782.
- Bülbül, B., & Sezer, M. (2011). Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients. International Journal of Computer Mathematics, 88(3), 533-544.
- Khan, K., Ali, A., Hussain, I., & Amir, N. (2021). A Comparative Numerical Study of Parabolic Partial Integro-Differential Equation Arising from Convection-Diffusion. Computer Modeling in Engineering & Sciences, 126(2), 673-692
- Engler, H. (2006, December). On some parabolic integro-differential equations: Existence and asymptotics of solutions. In Equadiff 82: Proceedings of the international conference held in Würzburg, FRG, August 23–28, 1982 (pp. 161-167).
- Al-Hayani, W., Alzubaidy, L., & Entesar, A. (2017). Solutions of Singular IVP’s of Lane-Emden type by Homotopy analysis method with Genetic Algorithm. Applied Mathematics & Information Sciences, 11(2), 407-416.
- Daftardar-Gejji, V., & Bhalekar, S. (2009). Solving nonlinear functional equation using Banach contraction principle. Far East Journal of Applied Mathematics, 34(3), 303-314.
- Odibat, Z. M. (2010). A study on the convergence of variational iteration method. Mathematical and Computer Modelling, 51(9-10), 1181-1192.
- Zeghdane, R. (2023). New adaptative numerical algorithm for solving partial integro-differential equations. Qeios.
- Avazzadeh, Z., Mohammad Heydari, Wen Chen, and G. Brid Loghmani. "Smooth solution of partial integro-differential equations using radial basis functions." The Journal of Applied Analysis and Computation 4, no. 2 (2014): 115-127.
تنزيل هذا الملف
الإحصائيات
كيفية الاقتباس
Hiba Shuker Mahmood, & Ahmed F. Qasim. (2025). طريقة انكماش باناخ لحل المعادلات التفاضلية التكاملية الجزئية. مجلة ابحاث كلية التربية الاساسية, 21(4), 138–157. https://doi.org/10.33899/berj.2025.Vol21.Iss4.54257
##submission.copyrightAndLicensing##

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.






